How Far

1.	A student investigates the reaction between ethanoic acid, CH ₃ COOH(I) and methanol, CH ₃ OH(I), in the presence of an acid catalyst. The equation is shown below.
	$CH_3COOH(I) + CH_3OH(I) \rightleftharpoons CH_3COOCH_3(I) + H_2O(I)$
	The student carries out an experiment to determine the value of \boldsymbol{K} $_{\text{c}}$ for this reaction.
	The student mixes 9.6 g of CH ₃ OH with 12.0 g of CH ₃ COOH and adds the acid catalyst.
	When the mixture reaches equilibrium, 0.030 mol of CH₃COOH remains.
	Calculate K_c for this equilibrium.
	K c =[4]
2.	Methanol, CH3OH, can be made industrially by the reaction of carbon monoxide with hydrogen, as shown in equilibrium 1 .
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$ Equilibrium 1
	At 298 K, the free energy change, ΔG , for the production of methanol in equilibrium 1 is -2.48×10^4 J mol ⁻¹ .
	ΔG is linked to K_p by the relationship: $\Delta G = -RT \ln K_p$.
	R = gas constant T = temperature in K.
	Calculate K_p for equilibrium 1 at 298 K.
	Give your answer to 3 significant figures.

K	р	=		units		ľ	3
---	---	---	--	-------	--	---	---

3(a).	The equilibrium constant K_p and temperature T (in K) are linked by the mathematical relationship
	shown in equation 5.1 ($R = Gas$ constant in J mol ⁻¹ K^{-1} and ΔH is enthalpy change in J mol ⁻¹).

$$\ln K_{\rm p} = -\frac{\Delta H}{R} \times \frac{1}{T} + \frac{\Delta S}{R}$$
 Equation 5.1

The table shows the values of $K_{\rm p}$ at different temperatures for an equilibrium.

Complete the table by adding the missing values of $\frac{1}{T}$ and ln K_p .

Temperature, T / K	400	500	600	700	800
<i>К</i> р	3.00×10^{58}	5.86 × 10 ⁴⁵	1.83 × 10 ³⁷	1.46 × 10 ³¹	1.14 × 10 ²⁶
$\frac{1}{T}$ / K ⁻¹	2.50 × 10 ⁻³				
In K p	135				

[2]

(b).	State and explain how increasing the temperature affects the position of this equilibrium and whether the forward reaction is exothermic or endothermic.				

[1]

(c). Plot a graph of $\ln K_p$ against $\frac{1}{T}$ using the axes provided on the opposite page. Use your graph and **equation 5.1** to determine ΔH , in kJ mol⁻¹, for this equilibrium. Give your answer to **3** significant figures.

(d). Explain how ΔS could be calculated from a graph of ln K_p against $\frac{1}{T}$.

4. What is the partial pressure of O_2 (in Pa) in a gas mixture containing 21% O_2 by volume and with a total pressure of 1.0 × 10⁵ Pa?

5.	Succinic acid (CH_2COOH) ₂ is esterified by ethanol, C_2H_5OH , in the presence of an acid catalyst to form an equilibrium mixture. Succinic acid is esterified by ethanol, C_2H_5OH , in the presence of an acid catalyst to form an equilibrium mixture.
	The equilibrium constant, K_c , for this equilibrium can be calculated using the amounts, in moles, of the components in the equilibrium mixture, using expression 5.1 .

$$K_{\rm c} = \frac{n(({\rm CH_2COOC_2H_5})_2) \times n({\rm H_2O})^2}{n(({\rm CH_2COOH})_2) \times n({\rm C_2H_5OH})^2}$$
 Expression 5.1

A student carries out an experiment to determine the value of \mathcal{K}_{c} for this equilibrium.

- The student mixes together 0.0500 mol of succinic acid and 0.150 mol of ethanol, with a small amount of an acid catalyst.
- The mixture is allowed to reach equilibrium.
- The student determines that 0.0200 mol of succinic acid are present in the equilibrium mixture.

		[4]
	Why can expression 5.1 be used to calculate K_c for this equilibrium?	
IV.		
iv.	K_c is the equilibrium constant in terms of equilibrium concentrations.	
		[1]
iii.	Draw the skeletal formula of the ester present in the equilibrium mixture.	
		[1]
		[41
ii.	Write the equation for the equilibrium reaction that takes place.	
		[1]
i.	Which technique could be used to determine the equilibrium amount of succinic a	acid?

٧.

Calculate the value of $\textit{K}_{\text{\tiny C}}$ for this reaction.

	Show your working.
	K _c = [3]
6(a).	Nitrogen monoxide, NO, and oxygen, O ₂ , react to form nitrogen dioxide, NO ₂ , in the reversible reaction shown in equilibrium 18.1 .
	reaction shown in equilibrium 10.1.
	$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Equilibrium 18.1
	Write an expression for K_c for this equilibrium and state the units.
	<i>K</i> _C =
	/\c-
	Units =[2]
(b).	A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total gas
	volume is 4.0 dm ³ .
	The mixture is allowed to reach equilibrium at constant temperature and volume.
	• The equilibrium mixture contains 0.40 mol NO and 0.80 mol O ₂ .
	• Under these conditions, the numerical value of K_c is 45.
	Calculate the amount, in mol, of NO ₂ in the equilibrium mixture.
	amount of NO ₂ = mol [4]

(c). The values of K_p for equilibrium 18.1 at 298 K and 1000 K are shown below.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Equilibrium 18.1

Temperature / K	K _p / atm ^{−1}	
298	$K_p = 2.19 \times 10^{12}$	
1000	$Kp = 2.03 \times 10^{-1}$	

i.	Predict, with a reason, whether the forward reaction is exothermic or endothermic.
	[1]
ii.	The chemist increases the pressure of the equilibrium mixture at the same temperature.
	State, and explain in terms of K_p , how you would expect the equilibrium position to change.
	[3]

7. A chemist investigates the equilibrium reaction between sulfur dioxide, oxygen, and sulfur trioxide, shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

- The chemist mixes together SO₂ and O₂ with a catalyst.
- The chemist compresses the gas mixture to a volume of 400 cm³.
- The mixture is heated to a constant temperature and is allowed to reach equilibrium without changing the total gas volume.

The equilibrium mixture contains $0.0540 \text{ mol } SO_2$ and $0.0270 \text{ mol } O_2$.

At the temperature used, the numerical value for K_c is 3.045×10^4 dm³ mol⁻¹.

	ii.	Determine the amount, in mol, of SO ₃ in the equilibrium mixture at this temperature	
		Give your final answer to an appropriate number of significant figures.	
		Show all your working.	
		equilibrium amount of SO₃	m
		equilibrium amount of 303	mo
8. Iron	o can be extrac	cted from its ore Fe₃O₄ using carbon.	
		are involved including equilibrium 18.1 , shown below.	
equ	uilibrium 18.1	Fe ₃ O ₄ (s) + 4C(s) \rightleftharpoons 3Fe(s) + 4CO(g) $\Delta H = +676.4 \text{ kJ mol}^{-1}$ $\Delta S = +703.1 \text{ J K}^{-1} \text{ mol}^{-1}$	
	i. Why is e o	equilibrium 18.1 a <i>heterogeneous</i> equilibrium?	
			[1]
i	i. Write the	e expression for K_p for equilibrium 18.1 .	

Write the expression for $\textit{K}_{\text{\tiny C}}$ and the units of $\textit{K}_{\text{\tiny C}}$ for this equilibrium.

iii.	The forward r	eaction in eq	uilibrium 18	3.1 is only	feasible at h	nigh temperatures
------	---------------	----------------------	--------------	--------------------	---------------	-------------------

- Show that the forward reaction is **not** feasible at 25 °C. 0
- Calculate the minimum temperature, in K, for the forward reaction to be feasible.

Another equilibrium involved in the extraction of iron from Fe_3O_4 is shown below. İ۷.

$$Fe_3O_4(s) + 4CO(g) \rightleftharpoons 3Fe(s) + 4CO_2(g)$$
 $\Delta H = -13.5 \text{ kJ mol}^{-1}$

$$\Delta H = -13.5 \text{ kJ mol}^{-1}$$

Enthalpy changes of formation, $\Delta_f H$, for Fe₃O₄(s) and CO₂(g) are shown in the table.

Compound	$\Delta_{\mathrm{f}}H/\mathrm{kJ}\mathrm{mol}^{-1}$
Fe ₃ O ₄ (s)	-1118.5
CO ₂ (g)	-393.5

Calculate the enthalpy change of formation, $\Delta_f H$, for CO(g).

$$\Delta_f H$$
, for CO(g) = kJ mol⁻¹ [3]

9.	Peroxyo	earboxylic acids are organic compounds with the COOOH functional group.
	Peroxye	ethanoic acid, CH₃COOOH, is used as a disinfectant.
	i.	Suggest the structure for CH ₃ COOOH. The COOOH functional group must be clearly displayed.
	ii.	Peroxyethanoic acid can be prepared by reacting hydrogen peroxide with ethanoic acid. This is a heterogeneous equilibrium.
		(art) CH COOM(art) CH COOOM(art) H O(l) K = 0.37 dm3 made1
	H ₂ U ₂	$_{2}(aq) + CH_{3}COOH(aq) \rightleftharpoons CH_{3}COOOH(aq) + H_{2}O(I)$ $K_{c} = 0.37 \text{ dm}^{3} \text{ mol}^{-1}$
		A 250 cm 3 equilibrium mixture contains concentrations of 0.500 mol dm $^{-3}$ H $_2$ O $_2$ (aq) and 0.500 mol dm $^{-3}$ CH $_3$ COOH(aq).
		Calculate the amount, in mol, of peroxyethanoic acid in the equilibrium mixture.
		amount = mol [3]

10(a).	lodine, l ₂ , is a grey-black solid that is not very soluble in water.
	Equilibrium 1 is set up with the equilibrium position well to the left.

$$I_2(s) \rightleftharpoons I_2(aq)$$

Equilibrium 1

Solid iodine is much more soluble in an aqueous solution of potassium iodide, KI(aq), than in

Equilibrium 2 is set up.

$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$

Equilibrium 2

A student dissolves I_2 in KI(aq). The resulting 200 cm³ equilibrium mixture contains:

$$4.00 \times 10^{-5} \text{ mol } I_2(aq)$$

 $9.404 \times 10^{-2} \text{ mol } I^-(aq)$
 $1.96 \times 10^{-3} \text{ mol } I_3^-(aq)$.

Calculate K_c for **equilibrium 2**.

Give your answer to an appropriate number of significant figures.

Kc :	=	 	 		 	 					 						 -	 	 		u	ni	it	s
																						Г	4	1

	(b).	The student adds an excess of aqueous silver nitrate, AgNO₃(aq), to the equilibrium mixture.
		Predict what would be observed.
		Explain the observations in terms of both equilibrium 1 and equilibrium 2 and any species formed.
		[4]
1 1.		ist investigated methods to improve the synthesis of sulfur trioxide from sulfur dioxide and oxygen.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
	The che	mist:
	•	mixed together 1.00 mol SO_2 and 0.500 mol O_2 with a catalyst at room temperature compressed the gas mixture to a volume of 250 cm ³ allowed the mixture to reach equilibrium at constant temperature and without changing the total gas volume.
	At equili	brium, 82.0% of the SO ₂ had been converted into SO ₃ .
	i.	Determine the concentrations of SO_2 , O_2 and SO_3 present at equilibrium and calculate K_c for this reaction.
		K _c =

II. 	Explain what would happen to the pressure as the system was allowed to reach equilibrium.
	[1]
iii.	The value of K_c for this equilibrium decreases with increasing temperature.
	Predict the sign of the enthalpy change for the forward reaction. State the effect on the equilibrium yield of SO_3 of increasing the temperature at constant pressure.
	Δ <i>H</i> :
	Effect on SO ₃ yield:
	[1]
	The chemist repeated the experiment at the same temperature with 1.00 mol SO_2 and an excess of O_2 .
	The gas mixture was still compressed to a volume of 250 cm ³ .
	State and explain, in terms of K_c , how the equilibrium yield of SO ₃ would be different from the yield in the first experiment.
	[3]
12(a).	Ethyne gas, C ₂ H ₂ , is manufactured in large quantities for a variety of uses.
	Much of this ethyne is manufactured from methane as shown in the equation below.
	$2CH_4(g) \rightleftharpoons C_2H_2(g) + 3H_2(g)$ $\Delta H = +377 \text{ kJ mol}^{-1}$
	Write an expression for K_c for this equilibrium.

(b).	A reseatempera	arch chemist investigates how to improve the synthesis of ethyne from methane at a high ature.								
	•	The chemist adds CH_4 to a 4.00 dm³ container. The chemist heats the container and allows equilibrium to be reached at constant temperature. The total gas volume does not change. The equilibrium mixture contains 9.36×10^{-2} mol CH_4 and 0.168 mol C_2H_2 .								
	i.	Calculate the amount, in mol, of H_2 in the equilibrium mixture.								
		amount of H ₂ = mol [1]								
	ii.	Calculate the equilibrium constant, K_{c} , at this temperature, including units.								
		Give your answer to three significant figures.								
	iii.	\mathcal{K}_{c} =								
		amount of CH ₄ = mol [1]								
(c).		emist repeats the experiment three times. experiment the chemist makes one change but uses the same initial amount of CH ₄ .								
	Complete the table to show the predicted effect of each change compared with the experiment.									
	Only us	se the words greater, smaller or same .								

Change	Kc	Equilibrium amount of C ₂ H ₂ (g) / mol	Initial rate
The container is heated at constant pressure			
A smaller container is used			
A catalyst is added to CH ₄ at the start			

13(a).	A research chemist	investigates how t	the value of K	changes with t	emperature.
--------	--------------------	--------------------	----------------	----------------	-------------

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

- The chemist mixes 0.800 mol of N₂(g) and 2.400 mol of H₂(g) and leaves the mixture to reach equilibrium at 300 °C.
- The total volume of the equilibrium mixture is 5.00 dm³.
- At equilibrium, 0.360 mol of NH₃(g) has formed.

Calculate	the value	$rac{1}{2}$ of K_{a}	under these	conditions
Calculate	uic vaiu	5 UI /\c	นแนะเ แเธงธ	COHUILIONS

Show all your working.

(b). Ammonia, NH₃, is manufactured by the chemical industry from nitrogen and hydrogen gases.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

- An iron catalyst is used which provides several benefits for sustainability.
- The chemical industry uses operational conditions that are different from the conditions predicted to give a maximum equilibrium yield.

The chemist adds more nitrogen to the equilibrium mixture in **(b)**.
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

The temperature is kept at 300 K and the volume at 5.00 dm³.

The chemist predicts that the addition of nitrogen will increase the proportion of H₂(g) that reacts.

	I.	Explain whether the chemist's prediction is correct.	
			[3]
	ii.	Suggest why the chemist is more concerned with increasing the proportion of H_2 that reacts rather than the proportion of N_2 that reacts.	
			[1]
14(a).	Ammon	nia is a gas with covalently-bonded molecules consisting of nitrogen and hydrogen atom	ıs.
	Ammon	nia can be made from the reaction of nitrogen and hydrogen in the Haber process. Fe catalyst	
	N ₂ (g) +	$3H_2(g)$ $450 {}^{\circ}C \text{ and } 200 {}^{kPa}$ $2NH_3(g)$ $\Delta H = -92 kJ mol^{-1}$ Equation 1	
	What ef and on	ffect will increasing the temperature have on the composition of the equilibrium mixture the value of the equilibrium constant?	
	Explain	your answer.	
			[2]

The mixture is heated and allowed to reach equilibrium.
At equilibrium, the mixture contains 0.400 mol N_2 and the total pressure is 500 kPa.
Calculate K_p .
Show all your working.
Include units in your answer.
κ _p = units
END OF QUESTION PAPER

(b). A chemist mixes together $0.450 \text{ mol } N_2 \text{ with } 0.450 \text{ mol } H_2 \text{ in a sealed container.}$